Synthesis of Biocompatible Liquid Crystal Elastomer Foams as Cell Scaffolds for 3D Spatial Cell Cultures.

نویسندگان

  • Marianne E Prévôt
  • Senay Ustunel
  • Leah E Bergquist
  • Richard Cukelj
  • Yunxiang Gao
  • Taizo Mori
  • Lindsay Pauline
  • Robert J Clements
  • Elda Hegmann
چکیده

Here, we present a step-by-step preparation of a 3D, biodegradable, foam-like cell scaffold. These scaffolds were prepared by cross-linking star block co-polymers featuring cholesterol units as side-chain pendant groups, resulting in smectic-A (SmA) liquid crystal elastomers (LCEs). Foam-like scaffolds, prepared using metal templates, feature interconnected microchannels, making them suitable as 3D cell culture scaffolds. The combined properties of the regular structure of the metal foam and of the elastomer result in a 3D cell scaffold that promotes not only higher cell proliferation compared to conventional porous templated films, but also better management of mass transport (i.e., nutrients, gases, waste, etc.). The nature of the metal template allows for the easy manipulation of foam shapes (i.e., rolls or films) and for the preparation of scaffolds of different pore sizes for different cell studies while preserving the interconnected porous nature of the template. The etching process does not affect the chemistry of the elastomers, preserving their biocompatible and biodegradable nature. We show that these smectic LCEs, when grown for extensive time periods, enable the study of clinically relevant and complex tissue constructs while promoting the growth and proliferation of cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquid crystal elastomer foams with elastic properties specifically engineered as biodegradable brain tissue scaffolds.

Tissue regeneration requires 3-dimensional (3D) smart materials as scaffolds to promote transport of nutrients. To mimic mechanical properties of extracellular matrices, biocompatible polymers have been widely studied and a diverse range of 3D scaffolds have been produced. We propose the use of responsive polymeric materials to create dynamic substrates for cell culture, which goes beyond desig...

متن کامل

Role of Surfactant during Microemulsion Photopolymerization for the Creation of Three-Dimensional Liquid Crystal Elastomer Microsphere Spatial Cell Scaffolds

Citation: Bera T, Malcuit C, Clements RJ and Hegmann E (2016) Role of Surfactant during Microemulsion Photopolymerization for the Creation of Three-Dimensional Liquid Crystal Elastomer Microsphere Spatial Cell Scaffolds. Front. Mater. 3:31. doi: 10.3389/fmats.2016.00031 role of surfactant during Microemulsion Photopolymerization for the creation of Three-Dimensional liquid crystal elastomer Mic...

متن کامل

Tissue Engineered Scaffolds in Regenerative Medicine

Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...

متن کامل

Liquid Crystal Elastomers—A Path to Biocompatible and Biodegradable 3D-LCE Scaffolds for Tissue Regeneration

The development of appropriate materials that can make breakthroughs in tissue engineering has long been pursued by the scientific community. Several types of material have been long tested and re-designed for this purpose. At the same time, liquid crystals (LCs) have captivated the scientific community since their discovery in 1888 and soon after were thought to be, in combination with polymer...

متن کامل

Wharton’s Jelly Mesenchymal Stem Cell: Various Protocols for Isolation and Differentiation of Hepatocyte-Like Cells; Narrative Review

There are several differentiation methods for mesenchymal stem cells (MSCs) into hepatocyte-like cell. Investigators reported various hepatic differentiation protocols such as modifying culturing conditions or using various growth factors/cytokines. In this literature review, we compared different MSCs extraction and isolation protocols from Wharton’s jelly (WJ) and explored various MSCs differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2017